mt
Class MT_ManyCelticJulia
Object
common:Generic
common:Formula
common:DivergentFormula
mt:DivergentManyJulia
mt:MT_ManyCelticJulia
class
- DivergentManyJulia:MT_ManyCelticJulia
Mark Townsend, June 2008
Ultra Fractal Source
Toggle UF Source Code Display
class MT_ManyCelticJulia(DivergentManyJulia) {
;
; Mark Townsend, June 2008
;
public:
complex func Init(complex pz)
return DivergentManyJulia.Init(pz)
endfunc
complex func Iterate(complex pz)
complex zn = pz^@p_power
return zn - real(zn) + abs(real(zn)) - m_seed
endfunc
default:
title = "Many Celtic Julia"
param p_power
caption = "Power"
default = (2,0)
endparam
float param p_bailout
caption = "Bailout value"
default = 128.0
min = 1.0
exponential = true
endparam
}
Methods inherited from class Object |
|
MT_ManyCelticJulia
public MT_ManyCelticJulia()
Init
public complex Init(complex pz)
- Description copied from class:
DivergentFormula
- Set up for a sequence of values
This function will be called at the beginning of each
sequence of values (e.g. at the beginning of each fractal
orbit).
- Overrides:
Init
in class DivergentManyJulia
- Parameters:
pz
- seed value for the sequence; for a normal fractal formula, this will be #pixel
- Returns:
- first value in the sequence; this corresponds to #z in a fractal formula
Iterate
public complex Iterate(complex pz)
- Description copied from class:
Formula
- Produce the next value in the sequence
As long as the sequence has not bailed out, this function
will be continually called to produce sequence values.
- Overrides:
Iterate
in class Formula
- Parameters:
pz
- previous value in the sequence; corresponds to #z in a fractal formula. Note that you should always use this value for computing the next iteration, rather than a saved value, as the calling code may modify the returned value before passing it back to the next Iterate() call.
- Returns:
- the next value in the sequence