|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object common:Generic common:Formula common:ConvergentDivergentFormula mmf:MMF_SwitchConvergentDivergentFormula mmf:MMF_SwitchRecursion
class
This formula is an adaption of 'Switch Recursion' from mmfs.ufm which itself was based on the Lucas recursion formula found on Mathworld.
Note that for historical reasons this formula uses its own
zold and bailout values instead of those defined in the base class
doing so should not be taken as a model for other formulas.
class MMF_SwitchRecursion(MMF_SwitchConvergentDivergentFormula) { ; This formula is an adaption of 'Switch Recursion' from mmfs.ufm ; which itself was based on the Lucas recursion formula found on Mathworld.<p> ; Note that for historical reasons this formula uses its own ; zold and bailout values instead of those defined in the base class ; doing so should not be taken as a model for other formulas.<br> public: import "common.ulb" ; @param pparent the parent, generally "this" for the parent, or zero func MMF_SwitchRecursion(Generic pparent) MMF_SwitchConvergentDivergentFormula.MMF_SwitchConvergentDivergentFormula(pparent) fTransform0 = new @p_Transform0(this) fTransform1 = new @p_Transform1(this) fTransformPZ = new @p_TransformPZ(this) fTransformP = new @p_TransformP(this) fTransformQZ = new @p_TransformQZ(this) fTransformQ = new @p_TransformQ(this) fTransformX = new @p_TransformX(this) fTransformD = new @p_TransformD(this) endfunc complex func Init(complex pz) ; m_Iterations = 0 not used in this formula m_BailedOut = false fTransform0.Init(pz) fTransform1.Init(pz) fTransformPZ.Init(pz) fTransformP.Init(pz) fTransformQZ.Init(pz) fTransformQ.Init(pz) fTransformX.Init(pz) fTransformD.Init(pz) if fType fConstant = pz if @p_addpixel fZold = pz = fValue + fConstant else fZold = pz = fValue endif else fZold = pz endif if @p_type=="Iterative" m_p = m_p0 = fTransform0.Iterate(pz) m_p1 = fTransform1.Iterate(pz) m_recursecount = 2 endif return pz endfunc complex func Iterate(complex pz) ; m_Iterations = m_Iterations + 1 not used in this formula if @p_type=="Normal" complex p complex p0 = fTransform0.Iterate(pz) complex p1 = fTransform1.Iterate(pz) int i = 2 repeat p = ((fTransformPZ.Iterate(i)*pz + fTransformP.Iterate(i))*p1 \ + (fTransformQZ.Iterate(i)*pz + fTransformQ.Iterate(i))*p0) \ / fTransformD.Iterate(i) p0 = p1 p1 = p until (i=i+1)>@p_recurse m_p = p1 else;if @p_type=="Iterative" m_p = ((fTransformPZ.Iterate(m_recursecount)*pz \ + fTransformP.Iterate(m_recursecount))*m_p1 \ + (fTransformQZ.Iterate(m_recursecount)*pz \ + fTransformQ.Iterate(m_recursecount))*m_p0) \ / fTransformD.Iterate(m_recursecount) m_p0 = m_p1 m_p1 = m_p m_recursecount = m_recursecount + 1 endif if @p_fractal=="Pn(z)+c" m_p = fTransformX.Iterate(m_p) + fConstant elseif @p_fractal=="c*Pn(z)" m_p = fConstant*fTransformX.Iterate(m_p) elseif @p_fractal=="Pn(z)+zold+c" m_p = fTransformX.Iterate(m_p) + fZold + fConstant elseif @p_fractal=="c*Pn(z)+zold" m_p = fConstant*fTransformX.Iterate(m_p) + fZold elseif @p_fractal=="zold*Pn(z)+c" m_p = fZold*fTransformX.Iterate(m_p) + fConstant else;if @p_fractal=="c*zold*Pn(z)" m_p = fConstant*fZold*fTransformX.Iterate(m_p) endif fZold = pz return m_p endfunc bool func IsBailedOut(complex pz) if ((@p_BailType=="Divergent" || @p_BailType=="Both" \ || @p_BailType=="Div.+Abs.Conv.") \ && |pz|>=@p_Bailout) \ || ((@p_BailType=="Convergent" || @p_BailType=="Both") \ && |pz-fZold|<=@p_SmallBail) \ || ((@p_BailType=="Absolute Convergence" \ || @p_BailType=="Div.+Abs.Conv.") \ && |pz-@p_root|<=@p_SmallBail ) m_BailedOut = true endif return m_BailedOut endfunc float func GetUpperBailout() return @p_Bailout endfunc float func GetLowerBailout() return @p_SmallBail endfunc complex func GetPrimaryExponent() return @p_recurse endfunc private: Transform fTransform0 Transform fTransform1 Transform fTransformPZ Transform fTransformP Transform fTransformQZ Transform fTransformQ Transform fTransformX Transform fTransformD complex fZold complex m_p complex m_p0 complex m_p1 int m_recursecount default: title = "Switch Recursion" int param v_mmfswitchrecursion caption = "Version (MMF Switch Recursion)" enum = "1.0" default = 0 hint = "This field is to absolutely ensure backward compatibility, \ the default will always be set to the latest version, but \ there may be some cases where an older effect that you like \ is lost in an update and you could still use it by selecting \ the older version number." visible = false endparam float param p_upperbailout visible = false endparam float param p_lowerbailout visible = false endparam bool param p_addpixel caption = "Offset z start" default = false hint = "When enabled the z start value (in Mandelbrot mode) is offset \ by the constant for the current position - normally '#pixel'." visible = !@p_manual || @p_mandy endparam complex param p_power visible = false endparam heading caption = "Information" text = "This formula is an adaptation of 'Switch Recursion' from \ mmfs.ufm which itself was based on the Lucas recursion \ formula found on Mathworld. Tip: You'll often find that \ the best Mandelbrot start value (critical value) is \ non-zero when you change the recursion parameters. You \ can use the switch back from the Julia to the Mandelbrot \ to help find the critical value - it's usually when the \ Mandelbrot 'lake' is at its largest, if you stick to real \ values for the recursion parameters then the critical \ value should also be real. Note that it's often worth trying \ values such as -1, -0.5, 0.5 or 1 as the Mandelbrot start \ value. For those more mathematically inclined see the details \ of the 'Transpoly' formula in mmf.html for details of several \ classic polynomial functions that you can create using this \ formula by setting the recursion transforms and values \ appropriately." endheading heading caption = "Bailout Options" text = "Depending on the transforms you choose your fractal could \ be either divergent or convergent. You need to choose the \ correct type to produce a result, a symptom of choosing the \ wrong type is an image in a single solid colour e.g. black. \ Sometimes fractals produce both types of 'vergence and for \ these you can choose 'Both'." endheading int param p_BailType caption = "Bailout Type" enum = "Divergent" "Convergent" "Both" "Absolute Convergence" \ "Div.+Abs.Conv." default = 0 hint = "If you get an empty or nearly empty fractal try switching \ from 'Divergent' to 'Convergent' or vice-versa or choosing \ 'Both'. Note that in some cases if your fractal is a \ Mandelbrot you may need to ensure that the zstart value \ is non-zero." endparam complex param p_root caption = "Convergence Value" default = (1,0) hint = "This is the value for testing for convergence to. For the \ 'Magnet' formulas the value should be (1,0), if you don't \ know the value to use it's best to stick to the plain \ 'Convergent' 'Bailout Type'. It's always worth trying (0,0)." visible = @p_BailType>2 endparam float param p_Bailout caption = "Divergent Bailout" default = 128.0 hint = "In general larger values will require higher iterations." visible = @p_BailType==0 || @p_BailType==2 || @p_BailType==4 endparam float param p_SmallBail caption = "Convergent Bailout" default = 1e-5 hint = "In general smaller values will require higher iterations." visible = @p_BailType>0 endparam heading caption = "Fractal Method" endheading int param p_type caption = "Recursion Type" enum = "Normal" "Iterative" default = 0 hint = "When you specify 'Normal' a set number of recursions are \ performed on each iteration, the number of recursions will \ control the degree (exponent) of the fractal (at least for \ divergent fractals). When you choose 'Iterative' the \ recurrence relation is performed as the iterations i.e. for \ divergent fractals the degree increases with the number of \ iterations." endparam int param p_recurse caption = "Number of Recursions" default = 6 min = 2 hint = "The number of recursions to perform on each iteration. The \ minimum is 2. Using the defaults a count of 2 will produce \ a degree 2 fractal, 3 will produce a degree 3 fractal and so \ on." visible = @p_type==0 endparam Transform param p_TransformX caption = "Transform of Pn(z)" default = NullTransform hint = "Here you may specify a transform of the recurrence \ function Pn(z) before it is plugged into the 'Fractal \ Formula'." endparam int param p_fractal caption = "Fractal Formula" enum = "Pn(z)+c" "c*Pn(z)" "Pn(z)+zold+c" "c*Pn(z)+zold" \ "zold*Pn(z)+c" "c*zold*Pn(z)" default = 0 hint = "Normally the recurrence relation you set using the \ transforms will produce a polynomial in z, Pn(z). \ Here you can choose how Pn(z) is used to produce a \ fractal." endparam heading caption = "Recursion Equations" text = "Here you can set the equations used for the recurrence \ relation by choosing appropriate transforms. \ The recurrence relation works as follows: Two base \ equations are used, P0(z) and P1(z) and on each recursion \ Pn(z) is created as Pn(z) = ((Q(n)*z + R(n))*Pn-1(z) + \ (S(n)*z + T(n))*Pn-2(z))/D(n) where Q(n), R(n), S(n), T(n) \ and D(n) are functions of the recurrence level n. You \ specify P0 as 'Transform 0', P1 as 'Transform 1', Q as \ 'Transform Q', R as 'Transform R', S as 'Transform S', T \ as 'Transform T' and D as 'Transform D'. The formula is \ really designed so you should use either the 'Constant Value', \ 'Simple Scale' or 'Linear' transforms from mmf.ulb but \ interesting results may arise from almost any transform :)" endheading Transform param p_Transform0 caption = "Transform 0" default = MMF_Scale hint = "P0(z)" endparam Transform param p_Transform1 caption = "Transform 1" default = MMF_Scale hint = "P1(z)" endparam Transform param p_TransformPZ caption = "Transform Q" default = MMF_Constant hint = "Q(n) in (Q(n)*z + R(n))*Pn-1(z) + (S(n)*z + T(n))*Pn-2(z)" endparam Transform param p_TransformP caption = "Transform R" default = MMF_Constant hint = "R(n) in (Q(n)*z + R(n))*Pn-1(z) + (S(n)*z + T(n))*Pn-2(z)" endparam Transform param p_TransformQZ caption = "Transform S" default = MMF_Constant hint = "S(n) in (Q(n)*z + R(n))*Pn-1(z) + (S(n)*z + T(n))*Pn-2(z)" endparam Transform param p_TransformQ caption = "Transform T" default = MMF_Constant hint = "T(n) in (Q(n)*z + R(n))*Pn-1(z) + (S(n)*z + T(n))*Pn-2(z)" endparam Transform param p_TransformD caption = "Transform D" default = MMF_Constant hint = "The polynomial is divided by this transform of the \ recurrence level at each stage." endparam }
Constructor Summary | |
---|---|
MMF_SwitchRecursion()
|
|
MMF_SwitchRecursion(Generic pparent)
|
Method Summary | |
---|---|
float |
GetLowerBailout()
Determine the lower bailout boundary. |
complex |
GetPrimaryExponent()
Determine the primary exponent. |
float |
GetUpperBailout()
Determine the upper bailout boundary. |
complex |
Init(complex pz)
Note that here zold is initialised to initial z |
boolean |
IsBailedOut(complex pz)
Test whether the formula has bailed out (i.e. |
complex |
Iterate(complex pz)
Produce the next value in the sequence |
Methods inherited from class mmf:MMF_SwitchConvergentDivergentFormula |
---|
SetParams |
Methods inherited from class common:Generic |
---|
GetParent |
Methods inherited from class Object |
---|
|
Constructor Detail |
---|
public MMF_SwitchRecursion(Generic pparent)
pparent
- the parent, generally "this" for the parent, or zeropublic MMF_SwitchRecursion()
Method Detail |
---|
public complex Init(complex pz)
MMF_SwitchConvergentDivergentFormula
What it's initialised to is normally irrelevant unless the derived
formula uses zold in its main calculations in which case the user
should be given the choice of initialising zold to either the location,
the initial z value or a fixed constant.
Init
in class MMF_SwitchConvergentDivergentFormula
pz
- the location (normally #pixel)
public complex Iterate(complex pz)
ConvergentDivergentFormula
As long as the sequence has not bailed out, this function will be continually called to produce sequence values.
Iterate
in class ConvergentDivergentFormula
pz
- previous value in the sequence; corresponds to #z in a fractal formula. Note that you should always use this value for computing the next iteration, rather than a saved value, as the calling code may modify the returned value before passing it back to the next Iterate() call.
public boolean IsBailedOut(complex pz)
ConvergentDivergentFormula
Since this is a divergent fractal, the test is easy: if it's bigger than the bailout, the sequence is done.
IsBailedOut
in class ConvergentDivergentFormula
pz
- last sequence value to test; this should be the value returned from the previous Iterate() call. Note that it is acceptable to ignore pz and use m_BailedOut, but any code calling IsBailedOut() should pass in the correct pz for Formula classes which do not use m_BailedOut.
public float GetUpperBailout()
ConvergentDivergentFormula
GetUpperBailout
in class ConvergentDivergentFormula
public float GetLowerBailout()
ConvergentDivergentFormula
GetLowerBailout
in class ConvergentDivergentFormula
public complex GetPrimaryExponent()
Formula
Many fractals can be characterized by an exponent value that is useful to other formulas, so we provide that here. If your formula does not need or use this value, override the p_power parameter and make it hidden.
GetPrimaryExponent
in class Formula
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |